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We arrived to conceive a numerical model based on the scalar finite element method to investigate  numerically,  in few 
secondes, the fundamental  characteristics  of propagation in  two – ring  photonic crystal fibers such as effective index of 
fundamental mode, its  confinement  and chromatic dispersion. Control and annulment of the chromatic dispersion for small 
wavelength have also been touched upon.  
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1. Introduction 
 
The technological aspect of PCF is pretty varied and 

research in this area is quite vast [1-4]. The waveguide 
properties of photonic crystal fibers are not from spatially 
varying glass composition, as in conventional optical fiber, 
but from an arrangement of very tiny and closely spaced 
air holes which go through the whole length of fiber. In 
contrast with standard optical fibers, photonic crystal 
fibers can be made of a single material and have several 
geometric parameters which can be manipulated offering 
large flexibility of design. Even more, these fibers offer 
also the possibility of light guiding in a hollow core, thus 
opening new perspectives in fields such as nonlinear fiber 
optics [5-17], fiber lasers, supercontinuum generation, 
particle guidance, and fiber sensors. Therefore, there is a 
high interest in the scientific community in order to 
employ photonic crystal fibers in all kind of fields. 
Numerical simulations play an important role for the 
design and modeling of PCFs. So far, various modeling 
methods have been developed such as effective index 
approach [18] [19], multipole method (MM) [20] [21], 
beam propagation method (BPM) [22]–[23], finite-
difference method (FDM) [24], finite difference time-
domain method (FDTD) [25][26], boundary element 
method [27] and finite-element method (FEM) [28-30].  
The choice of modeling tool can impact the computational 
time, required computational resources, and limitations of 
the method.  

However, the vectorial finite element solutions have 
been known to include nonphysical solutions [31].   It will 
be difficult to distinguish between the spurious  and the 
physical modes of the guides.  Scalar finite element 
formulation for the analysis of isotropic waveguide with 
arbitrary cross section, is widely used  in optical 
waveguides[32]. This approach has its main advantages: 
the smaller matrix dimensions, less computer time, no 

spurious modes and capability of easily computing higher 
order modes.  

In this paper, the approximate scalar -finite element  
method is extended to the two rings-PCF  for  the 
investigation of  its propagation characteristics by 
calculating the effective index of  fundamental mode,  
determining the distribution of electric field and studying 
its confinement based on several opto-geometric 
parameters of the fiber. The obtained numerical results 
show a good agreement with full-vector (V-FEM) ones 
reported in literature. Besides, in order to test the rapidity 
of used algorithm based on SC-FEM, we have estimated 
the calculation time  for each simulation with SC-FEM 
and compare it to the  ones of V- FEM. The results reveal 
the clear reduction in calculation time with SC-FEM. 
Afterwards, this method is applied for analyzing the 
dispersion properties of this PCF  by manipulation of  the 
size of air holes in the cladding or rather strategically 
structuring its respective positions.  We could to eliminate 
the chromatic dispersion  at  966 nm while  in standard 
fibers it is  difficult to eliminate  the dispersion  for 
wavelengths less than 1275 nm.  

 
2.  Analysis  method  
 
The SC-FEM is applied to solve the wave equation in 

a PCF. Its principle is based on weighted residuals 
method, especially Galerkin method. The SC-FEM 
approach is advantageous over the vectorial FEM (V-
FEM) method. One of the main issues of the SC-FEM is 
that it has no spurious problem and the matrices in 
eigenvalues are small and symmetric and this results in the 
efficiency of the numerical algorithm and subsequently the 
computational time is far less than that of the V-FEM 
technique.   

Galerkin’s method  consists in writing the unknown 
function as a linear combination of correctly weighted 
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functions  that conform to the problem. This allows us to 
obtain a discrete or linear matrix system from basis 
functions. This choice allows accelerated numerical 
computation.  In SC-FEM one starts from the Scalar wave 
equation: 
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 Where rε is the relative permitivity of the material, 0k  is 
the wave number in the vaccum, 

effn  is the effective index 
and ϕ solves wave equation (1). Since this solution is 
unknown at this stage, it is necessary to find approximate 

solution 
−

φ   that generates an error residual  “R” in a right- 
hand of equation (1) which means: 
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Then, the solution 
−

φ  should be constructed so that the 
integral of the residual will be zero for some choices of 
weighted functions ψ. Therefore, this implies:   
 

0=∫∫ dydxRψ
                                         

(3) 

 
Substituting   R  from (2) into (3) and carrying out the 

integration by parts in (3), gives 
 

( ) 022
0 =−+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∂
∂

∂
∂

+
∂
∂

∂
∂

−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂
∂

+
∂
∂

−

−−−−

∫∫

∫∫∫ ∫
dydxnk

dydx
yyxx

dx
y

dy
x

effr φεψ

φψφψφψφψ

  (4) 

 
Then equation (4) can be rewritten as: 
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Where ∫

Γ

Γd  represents the line integral calculus at the  

boundary Γ   and n∂∂   is the derivative with respect to 
the normal  vector n.  
 

By applying the SC-FEM, the analysis region is 
divided into many triangular elements “e” of three nodes, 
an equation in one such element is given by: 
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In the Galerkin method, both the approximate wave 
function eφ  and the weight function  eψ  are expanded by 
the same basis function  eN and thus we get: 
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Where 

iN :  The basis functions  
eiφ :  The field component at each node   

By substituting  (7) and (8) in equation  (6),  we find in 
each element  e: 
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The next step of the SC-FEM is to assemble the 

contributions of all triangles of the region of interest to 
obtain:  
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Upon assuming that the wave function  eφ  and its 

normal derivative 
n

e
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of equation (10) becomes:  
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Substituting equation (16) in (14), we get:  
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The second term of the equation (17) becomes zero by 

the Dirichlet condition and therefore equation (17) 
modifies to: 
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We finally get an eigenvalue matrix equation that needs to 
be addressed as: 
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The equation (19) can  also be written in this form: 
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The square of the propagation constant β is an eigenvalue 
and ϕ is an eigenvector. 

 
                                   

The determination of matrix [k] in equation (21) needs to 
calculate [Ae], [Be] and  [Ce] as: 
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The shape function [Ne] is expressed by area 
coordiantes L1, L2, L3,  permitting to calculate integrals in 
Eqs (23) – (25). These coordinates are writen as: 
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Where 321 yyQ −= , 132 yyQ −= , 213 yyQ −= , 

321 xxR −= , 132 xxR −= , 213 xxR −=  and  

( )( ) ( )( )[ ]121312132
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area  of the first order triangle, xi and yi (i=1:3) are the 
coordinates of the three nodes of  the triangle e. 

Next, the matrices [Ae][Be][Ce] of all element are 
combined to obtain the global matrices [K] and [M] after 
paying attention to the rows and columns. The obtained 
global matrix system will be solved to eventually obtain 
the propagation constant of guided modes and their eigen 
vectors. 

 
 
3. Results  
 
3.1.  SC- FEM Modal Solution for PCF 
 
First, we demonstrate the application of the SC-FEM 

to study the properties of fundamental mode  xE11   in 
photonic crystal fibers. In this study, we consider index 
guiding silica PCF  with two rings of 18  air holes  
arranged in  a triangular lattice  with the diameter of an air 
hole denoted by d and the distance (pitch) between two air 
holes by Λ.  
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Fig. 1.  The cross section of  PCF with its triangulation 
(7808 triangles)

  
 

The refractive index of the silica used is taken as 
1.4402 at an operating wavelength of 1.55 µm.  The SC-
FEM model employs a typical division of the cross section 
of PCF into 7808 triangular elements  of first order  as it is 
shown in Fig. 1.

 The Fig. 2 shows the variations of the effective 
indices of the fundamental mode xE11  computed by the 
SC-FEM, with respect to the wavelengths for d/Λ= 0.625 
and Λ=8µm. In the same figure we represented the values 
of effective indices of the same mode calculated with the 
variational FEM [32][33] where we see that the results are 
in good agreement especially for large wavelengths. This 
is also confirmed in the figure3 where we represented the 
variation of effective indices calculated with SC –FEM 
and variational FEM, respectively for  d/Λ=0. 5 and 
Λ=8µm. 

 
 

  
Fig. 2.  Effective index of  xE11  over wavelength  in  a 

PCF of two rings of 18 circular holes                                
and  d/Λ=0.625. 

 
 
 

  

Fig. 3. Effective index  of xE11  over wavelength in a PCF 
of two rings of 18 circular holes  and  d/Λ=0.5. 

 
 

 
Fig. 4. Effective index of xE11  over wavelength in a PCF 
of two rings of 18 circular holes and d/Λ=0.5,  calculated  

with three numerical methods. 
 

 
Next, we include the wavelength dependent refractive 

index of core during the finite element analysis of the SC-
FEM using Sellmier expansion. Inclusion of wavelength 
dependent material dispersion in our model is more 
realistic.  The interval of guidance [nFSM  ncore] will vary 
according to the wavelength in this case, where nFSM  is 
effective index of Fundamental Space filling Mode. In  
Fig. 4, we represent the variation of effective indices of 

xE11  in a PCF of d/Λ= 0.5, calculated with three different 
models: SC-FEM, Full vectorial FEM [34] and BPM. It 
can be seen that the obtained results are in a good 
agreement. We have also tested the  computation time  for 
the SC-FEM and Full Vectorial FEM, where it was noted 
that the time of computation  in the SC-FEM doesn’t 
exceed 20s while the full Vectorial FEM   consumes a 
longer time (60-127s). 

One  clearly demonstrated in several researchs [35] 
that increasing the number of air-hole rings decreases the 
confinement loss exponentially while the design 
parameters of the photonic crystal fiber d and Λ  have the 
most significant effect on dispersion.  

In the next stage, the impact of varying the operating 
wavelength on the confinement of fundamental mode is 
studied for a PCF of two rings. Figures (5a) and (5 b) 
illustrate the mode confinement for two different 
wavelengths of 1000nm and 1400nm, respectively, for a 
value of d/Λ = 0.625, D core =11µm, d =5 µm and                
Λ  =8 µm. 
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     (a) 
 
 
 
 
 
 
 
 
 
 
 
 

         (b) 
Fig. 5. Transverse repartition of  fundamental mode xE11   
in PCF of two rings  and for  Λ =0.625 , (a)  λ=1000nm,    
                                (b) λ=1400nm. 

 
 

Based on the (Fig. 5.a), one can conclude that when 
the fundamental mode is pretty well confined to the core 
with short wavelengths, its effective index is close to the 
refractive index of the core. On the other hand, when the 
mode is confined little for large wavelengths (figure 5.b) 
because an important part of the energy propagates 
through the cladding, the effective index of the 
fundamental mode decreases while getting closer to the 
index of the cladding, which agrees with earlier research 
result [35]. 

 
3.2.Control of Dispersion 
 
The chromatic dispersion is subtracted from the 

variation of the effective index of fundamental mode,  
calculated by the SC-FEM method, according to the 
wavelength and by using the technique of Sellmeier of the 
silica according to wavelength.  We varied the parameters 
of the PCF’s structure to see teir impact on the variation of 
effective index versus the wavelength, the chromatic 
dispersion and its vanishing. We noted that adjustment of 
d and Λ could give very interesting results for the control 
of dispersion. 

 
 
 
 
 
 

The Fig. 6.a depicts  the variation of the effective 
index of the fundamental mode according to the 
wavelength in the PCF of d/Λ=0,5 . 
 

 
 

(a) 
 

 
(b) 

 
Fig. 6. Effective index of fundamental mode  over  

wavelength  for   d/Λ=0 .5 (a) Chromatic dispersion  
versus wavelength  (b). 

 
 

From the simulations illustrated in the figure (6.a), we 
note that the effective index varies strongly: from 
1.461016 to 1.442843. It is at the source of big diversity in 
the features of dispersion of the PCF according to their 
profile of index. We observe that the zero dispersion is 
close to 1186nm (Fig. 6.b). 
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(a) 
                 

 
(b) 

 
Fig. 7. Effective  index  of  fundamental  mode   over  
wavelength  for  d/Λ=0.75 (a) Chromatic dispersion 

versus wavelength  (b). 
 

 
We also observe from the Fig. (7.a) that the effective 

index for this structure of PCF, increases and decreases 
with the wavelength and does not vary with a large step.  
As shows the figure 7.b, the zero of chromatic dispersion 
of PCF  with d/Λ= 0,75 is about 1125nm. 

Subsequently, we wanted to shift the zero of 
dispersion to lower wavelengths close to 1000nm by 
varying the diameter of the air holes and the pitch Λ.   

 In the figure (8.a), one represent the variation of 
effective index according to wavelength by choosing (d / 
Λ = 0,625).  One can conclude that the effective index 
increases and decreases with the wavelength when   the 
ratio d / Λ increases, thing that one can exploit in the 
annulment of the chromatic dispersion. 

According to the plot in Fig. (8.b), we got the zero 
dispersion in the neighborhood of 966 nm in a PCF fiber 
with the geometric features (pitch = 8µm and d=5µm), 

thing that doesn't happen in the standards fibers where the 
zero of dispersion cannot be smaller than 1275nm, it is due 
to the number of degrees of freedom that offers this PCF  
to nullify the chromatic dispersion when compared to 
standards fibers. 
 

 
 

(a) 
 

 
          

 (b) 
 

Fig. 8.  Effective  index  of  fundamental  mode  over 
wavelength for d/Λ=0.625 (a) Chromatic  dispersion 

versus wavelength  (b). 
 

 
4. Conclusion  
 
We demonstrated in this work that the SC-FEM can 

be applied on the PCF to investigate numerically  the 
features of propagation by determining the modal field 
distribution and calculating its effective index in very little 
time.  Comparing the results with those of earlier studies it 
is evidenced that the efficiency of the SC-FEM method in  
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the modeling  of the propagation in PCF fiber despite the 
simplification of the used mathematical algorithm. 

We noted through the reported results about the 
features of fundamental mode in the  two rings- PCF  that 
are especially attractive for numerous applications as 
intensity sensors.    

We also studied the vanishing of the chromatic 
dispersion in this fiber for short wavelengths. The  
different simulations that were done on this topic,  allowed 
us to see the possibility of controlling the chromatic 
dispersion while adjusting the geometry of the PCF and 
this allowed us to nullify the chromatic dispersion about a 
wavelength of around of 966nm. 
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